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Motivation

* Labeling a huge amount of data for training is time-consuming!




Motivation (cont’d)

* Labeling a huge amount of data for training is time-consuming!
* Can take data from one dataset, and apply the learned classifiers for another??
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Motivation (cont’d)

* Labeling a huge amount of data for training is time-consuming!

* Can take data from one dataset, and apply the learned classifiers for another??
Not A Good Idea!!

* Possible mismatch between datasets/domains (see example below)

Source Domain/Dataset Target Domain/Dataset



Examples of Domain Mismatch

Music Retrieval

Source )




Examples of Domain Mismatch (cont'd

amazon Semantic Analysis
wahiberg kunis macfarlane
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What Can We Do?

* To solve the above cross-domain recognition tasks...
 Domain Adaptation
* Aim to address the (same) learning task across different domains

Source Domain/Dataset Target Domain/Dataset



Outline

 Domain Adaptation (DA)
* Semi-Supervised vs. Unsupervised DA



Semi-Supervised DA

e Source domain: label-data available

* Target domain: few label data, most are unlabeled
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Unsupervised DA

e Source domain: label-data available

* Target domain: only unlabeled data are presented

11



Goal of Semi-Supervised/Unsupervised DA

* Adapt the learned model from source to (22t domains
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Goal of Semi-Supervised/Unsupervised DA (cont’d)

* Adapt the learned model from source to (22t domains
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Goal of Semi-Supervised/Unsupervised DA (cont’d)

* Adapt the learned model from source to (22t domains
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Goal of Semi-Supervised/Unsupervised DA
(cont’d)
* Adapt the learned model from source to (22t domains

Domain
Adaptation




Outline

* Domain Adaptation

* Homogeneous vs. Heterogeneous DA



Homogeneous DA

* Source and target-domain data are with the same feature type

* Can be applied to semi-supervised or even unsupervised DA

Image Document
Classification Categorization

Target
Domain
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Heterogeneous DA

 Source and target-domain data are with the different feature types/dims

* Typically require semi-supervised DA settings

(i.e., at least few labeled data presented in the target domain)
Image Document

Classification Categorizatio
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What we address in our work...

e Semi-supervised & Heterogeneous DA

* With applications to

1. Cross-Domain Object Recognition

2. Cross-Lingual Text Categorization
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* Proposed Method



Motivation: Joint Distribution Adaptation

* Joint Distribution Adaptation (JDA) for homogeneous DA [Long et al., ICCV’13]

* Find a proper common feature space via transformation matrix A, so that
both marginal P(X) and conditional distributions P(X|Y) can be matched.

Ps(ATXs) ~Pr(ATX7r)  Ps(A'Xs|Ys) ~ Pr(A"Xr|YT)

OO : Source-Domain Data \ / OO : Target-Domain Data

ool ~©

o
OColo © A

Il H
Common Feature Space

Source Domain Target Domain 21



Our Proposed Method

* Generalized Joint Distribution Adaptation (G-JDA)
* JDA only addresses homogeneous DA & does not utilize any target-domain labels

* For semi-supervised & heterogeneous DA
» Derive transforms A g and AT for relating source and target domain data.

OO : Source-Domain Data 1] : Labeled Target-Domain Data
O : Unlabeled Target-Domain Data
% A
oo|A © / o 0
O O O
0 o 0 As E|I:| o®, / 0 o AT S
O ! O O O o
o |0 I 2ol B — -
O S ooOop Il = = od g
o ©O
0o © /] O >

Target Domain 2>
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Notation

e Source domain data: Ds = {Xs, Ys} = {xs,yS i 1 , x € RYs

* Target domain labelled data: D = {X,, Y.} = {xL,yL i 1 , x e RIT

* Target domain unlabeled data: Dy = {Xy, Yy} = {x x|, € RIT
+ Note that [RYS % RAT

e Assume that both domains have the same C classes of interest.

U’yU (= 1'



Distribution Alignment for G-JDA

* G-JDA aims to find a common feature space where both marginal &
conditional distributions are matched.

Ps(AlXs) ~ Pr(A]Xr) Ps(ALXs|Ys) ~ Pr(AlXr|YT)

* Following JDA, we apply MIMD to measure distribution discrepancy.
[A. Gretton et al., NIPS 2006]

1 1 2r :
Marginal distribution |:> Emar(As, AT) = ||—ZA — n—ZAIxITHZ

discrepancy

nC

nC
1 & - 1
Conditional distribution |:> ond(AS A7) = || ZATng - — AT ||2
discrepancy Sl 1 nTj 1
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Objective Function of G-JDA

e Derive transforms As and AT for relating source & target domain data.

* The resulting feature space would better match the marginal and
conditional distributions of projected cross-domain data.

min  Emar(As, Ar) + 35 E0) (As, Ar)+ A ([|As]|? + |A71?)

As AT c=1 —cond
S.t. )A(H)A(T — I, mmm) Prevent trivial solution
¢ 1
where X = [A;_XS, AIXT], H= In5+nT — mlnS"'nT



G-JDA Algorithm

OO : Source-Domain Data 10 : Labeled Target-Domain Data
O : Unlabeled Target-Domain Data
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G-JDA Algorithm (cont’d)

OO : Source-Domain Data 10 : Labeled Target-Domain Data
O : Unlabeled Target-Domain Data
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G-JDA Algorithm (cont’d)

OO : Source-Domain Data

ool ~ ©
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G-JDA Algorithm (cont’d)

OO : Source-Domain Data
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G-JDA Algorithm (cont’d)

OO : Source-Domain Data 10 : Labeled Target-Domain Data
O : Unlabeled Target-Domain Data
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G-JDA Algorithm (cont’d)

OO : Source-Domain Data

ool ~ ©
ol o
o

Source Domain

[ : Labeled Target-Domain Data

O : Unlabeled Target-Domain Data

O
O O
O o

Hpo g

Target Domain z:



G-JDA Algorithm (cont’d)

OO : Source-Domain Data 10 : Labeled Target-Domain Data
O : Unlabeled Target-Domain Data
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Image Classification Task

* Office and Caltech-256 datasets
e Office: Amazon (A), Webcam (W), DSLR (D) [K. Saenko et al., 2010]
 Caltech (C) [G. Griffin et al., 2007]

damazon
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Settings & Features

* 10 overlapped classes across domains

* Feature: Decaf, [J. Donahue et al., 2014] and Surf [H. Bay et al., 2006]
e Source domain : randomly select 20 images per class.

* Target domain: randomly select 3 images per class as labeled data.
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Recent HDA Methods

* Baseline : SVM in target domain [C.-C. Chang and C.-J. Lin, LIBSVM 2011]
* DAMA : [C. Wang and S. Mahadevan, 1JCAI 2011]

* HFA : [L. Duan et al., ICML 2012 ]

e MMDT : [J. Hoffman et al., ICLR 2013]
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Cross-Feature Recognition

Accuracy(%)
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Cross-Feature Recognition (cont’d)

Accuracy(%)

95

O
o

(00)
Ul

(00]
o

~
o

~
o

(@)
(9

Source (Surf)->Target (Decafy)

W->W
Source->Target

M Baseline
m DAMA
= HFA

~ MMDT
m G-JDA

38



Recognition Across Domains & Features

Accuracy(%)
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Recognition Across Domains & Features (cont’d)

Source (Surf)->Target (Decaf)
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Cross-Lingual Text Categorization

* Multilingual Reuters Collection Dataset [M. Amini et al., NIPS 2009]
e 11K articles from 6 categories in 5 languages
* English, French, Italian, German, and Spanish

* BOW + TF-IDF with 60% energy preserved via PCA [L. Duan et al.,
ICML’12]

* Source domain : randomly select 100 articles per class.

* Target domain: randomly select {10,20} articles per class as labeled data,
and randomly select 500 articles per class as unlabeled data.
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Accuracy(%)

# of Labeled Target-Domain (Spanish) Data per Category = 20
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Convergence analysis

* Image classification task with cross domains & features
* Source: Caltech with SURF
* Target: DSLR with Decaf,
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Conclusion

* We proposed Generalized Joint Distribution Adaptation (G-JDA) for
associating & recognizing heterogeneous cross-domain data.

* By learning a pair of feature transformations for source and target-
domain data, G-JDA derives a domain-invariant common feature
space for addressing the above goal.

* Our experiments on cross-domain visual and text classification tasks
verified the effectiveness of our proposed G-JDA for HDA.






Thank You!
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Distribution Measure: MMD Criteria

* Maximum Mean Discrepancy [A. Gretton et al. NIPS 2006]

* MMD is an empirical formula which measures discrepancy between
two distributions

* {x1, Xy, ..., Xn} come from distribution P
* {y1,V2, ..., Ym} come from distribution Q

1300 - 235009

* ¢(.) is kernel function

* We follow TCA [S. J. Pan et al. 2011]and JDA [M. Long et al. 2013] to
choose linear kernel in MMD.

« MMD(P, Q) =




Optimization

* 1. Rewrite the equation as compact trace form

1 & Toi 1 & ij 2
Emar(As, A7) =|l— > A.X.—— > A_X/|

n¢ n<
() 1 & Tl C 1 & T/ €12
Econa(As, AT) = Il— D JAIXS" = — 3 AL
S i=1 T j=1



Optimization

* 1. Rewrite the equation as compact trace form

(1
Emar = tr(A"XMoX ' A) s 1T LIS ns
(Mo)j =14 7 ifij>ns

EL) 4= tr(ATXMXTA) =L otherwise.

! e e —
XS Odsan T ifi,j<nsandz;=zj=c
X = L ifij>nsandzi=z =c
oden5 XT (M )_,< j
clij =

7T

o -
if{l_ns,j Ns

A =[As;Ar] T i s

\O otherwise.

and zi=zj=c¢




Optimization

e 2. The formula becomes

min tr(ATXM;XTA) + A ([|As]|* + || Ar]|°
_min, Z ( )+ A (IAsI? + IAT]?)

s.t. ATXHXTA =1



Optimization

* 3. Solve generalized eigenvalue decomposition problem

* A can be determined by dy(dimensionality of latent space) smallest
eigenvectors

C
(X> MXT +R)A=yXHXTA
(=0

R c Rn5+nr — ( AIﬂs Onsan )

Onrxns Al



Parameter sensitivity

* Dimensionality of the common feature space
88
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Parameter sensitivity

e Lambda

Accuracy(%)
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Parameter sensitivity

* |teration number

Accuracy(%)
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