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Abstract
Zero-shot learning (ZSL) aims at recognizing data as an unseen category, using in-

formation learned from the training data of predefined (seen) labels or attributes. In this
paper, we propose an effective learning model for solving ZSL, which focuses on relating
image and semantic domains with classification guarantees. In particular, we introduce
semantics-preserving locality embedding when associating the above cross-domain data.
We show that our ZSL model can be extended from inductive and transductive ZSL
settings, if unlabeled data of unseen categories are presented during training. In the ex-
periments, we show that our proposed method would perform favorably against baseline
and state-of-the-art approaches on multiple benchmark datasets.

1 Introduction
Typically, in order to train image classifiers for object recognition, one would require a suf-
ficient amount of training samples per category. When it comes to recognizing novel (or
unseen) categories (i.e., no training data of that class available), such classifiers cannot be
properly generalized. This is known as the problem of zero-shot learning (ZSL).

A common practice for ZSL is to utilize information from the semantic domain. That
is, each class is represented by a vector representation in a semantic space, which is either
based on human-annotated attributes (e.g., “long tail”, “white fur”, etc.) or in terms of
unsupervised word embedding (e.g., word2vec [24]). During the training stage of ZSL,
labeled images and their semantic vectors are jointly used to leverage the information across
the corresponding visual and semantic spaces. In the inference stage, semantic vectors of
unseen categories are observed, and thus the test images can be classified accordingly.

Previous methods such as Direct Attribute Prediction (DAP), Indirect Attribute Predic-
tion (IAP) [15], and Semantic Output Code (SOC) [28] divide the ZSL problem into multi-
ple independent attribute prediction tasks. To observe information across attributes, methods
aiming at learning the mapping between visual and semantic spaces have also been pro-
posed [9, 27, 35]. Nevertheless, since only the mapping from visual to semantic spaces
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Figure 1: Illustration of semantics-preserving locality embedding for zero-shot learning.
Note that AS and AF are the transforms for the semantic and feature spaces, respectively.

is performed, inter-class similarities measured in one domain might not be consistent with
those observed in the other domain. Recent approaches like [2, 10, 32, 38, 41, 42] choose to
share information across domains by learning the associated similarity metrics.

In this paper, we propose a novel learning framework for ZSL. We introduce the idea of
semantics-preserving locality embedding, which performs concept matching between visual
and semantic domains by preserving the locality of within-class data when learning our ZSL
model (see Figure 1 for illustration). As a result, image and semantic data can be better
associated for recognizing data of unseen categories. We note that, our proposed method can
be extended from the standard inductive to transductive settings, in which unlabeled data of
unseen classes can be observed during training [10, 12, 14, 31]. The main contributions of
this paper are highlighted as follows:

• We propose semantics-preserving locality embedding for ZSL. Instead of relying on
data observed from either image or semantic information domain, we perform sub-
space learning via matching cross-domain concepts for improved performance.

• Our proposed semantics-preserving locality embedding exploits the locality of within-
class image data, with the semantics jointly embedded in the derived subspace.

• Our proposed method would result in a closed-form solution via eigen-decomposition,
which is easy to implement and to solve.

• Depending on the availability of unlabeled data of unseen categories during learning,
our method can be robustly performed in both inductive and transductive settings.

2 Related Work

Existing ZSL approaches typically consider semantic embedding of class labels for relating
data of seen and unseen categories. The manually-defined attributes space was the first to be
adopted [8, 15, 17, 22, 28, 37, 40]. However, such methods might not generalize to practical
application, since one would expect a large number of classes for determining the manually-
labeled semantic vectors for each class. As the result, recent works [2, 3, 9, 11, 27] chose
to extract unsupervised semantic vectors mined from large text corpus on the Internet (e.g.,
Word2Vec [24], Glove [30]). Nevertheless, this strategy typically results in noisy attribute
spaces. To alleviate this problem, works like [2, 3, 10] combined multiple semantic spaces
and utilized additional strong supervision of visual data for improved performances.
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We note that, ZSL methods based on learning feature transformation mainly seek for
mapping data from visual to semantic spaces. Take DAP and IAP [15] for example, the for-
mer treated the learning of each attribute as an independent binary classification problem,
while the latter utilized the classification outputs of seen classes for relating unseen visual
and semantic data. [22, 37] further improved such models by considering the correlation
between attributes. SOC [28] used multiple output linear regression to learn the mapping
efficiently. Both Deep Visual-Semantic Embedding Model (DeViSE) [9] and [35] learned
projection from image to word vectors using deep neural network (DNN). Convex Combina-
tion of Semantic Embeddings (ConSE) [27] chose to map images into the semantic space via
a convex combination of the seen class label embedding vectors. [5] learned a metric func-
tion for relating visual and semantic data, and Multi-Task Embedding (MTE) [39] applied
multi-task learning to observe the embedding of each attribute.

Recent ZSL approaches also seek for common representations across domains. For ex-
ample, methods like [1, 2, 32] learned a bilinear function between the two spaces, and Latent
Embedding Model (LatEm) [38] derived the piece-wise linear ones instead. Several methods
based on deriving common feature spaces also exist. For example, [10, 21] learned a latent
space using Canonical Correlation Analysis (CCA), and [41, 42] proposed to transform the
observed features via semantic similarity embedding. These methods become preferable
when domain discrepancy between visual and semantic domains is expected.

Another category of ZSL would be the classifier-based methods. In short, these methods
create a new classifier for unseen classes by combining or adapting existing classifiers for
seen classes. [7] design their classifiers by utilizing a domain transfer function and a prob-
abilistic regressor. Co-Occurrence Statistics (COSTA) [23] builds a classifier for the novel
class as a weighted combination of classifiers derived from seen classes, using co-occurrence
statistics obtained from the Internet. More recently, [6] chooses to synthesize the classifier
for unseen classes from the existing classifiers using similarity observed between the seman-
tic vectors from the seen classes.

For transductive ZSL, Propagated Semantic Transfer (PST) [31] performs label prop-
agation by exploiting the manifold structure for novel classes. Transductive Multi-View
Zero-Shot Learning (TMV) [10] and [14] utilize CCA and regularized sparse coding for re-
lating cross-domain data. Shared Model Space (SMS) [12] extended [32] for the transductive
setting and reported promising performance.

3 Our Approach

3.1 Problem Settings and Notations

LetD= {X,Y}= {xi,yi}N
i=1 denote training data in the visual domain, where the ith column

xi of X ∈ RdF×N represents the ith instance, and yi is its corresponding label from L =

{1,2, ..,C}. For ZSL, we have DU = {XU ,YU} = {xU
i ,y

U
i }NU

i=1 as test data, where xU
i ∈

RdF denotes the ith test instance and yU
i is the associated label from the unseen label set

LU = {1U ,2U , ...,CU}. Note that the label sets L and LU from training and testing data
are disjoint (i.e., L∩LU = ∅). Note that each class is associated with a semantic vector
in a dS dimensional space. Thus, we have S = {si ∈ RdS}Ci=1 and SU = {sU

i ∈ RdS}CU

i=1 as
semantic vectors of training data and test data, respectively. Our goal is to predict unseen
labels {yU

i }
NU
i=1 of test data by leveraging visual and semantic-domain data.
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3.2 Our Proposed ZSL Framework
Inspired by [32, 35], we cast ZSL as a subspace learning problem. We aim at finding distinct
feature transformations AF ∈RdF×dk and AS ∈RdS×dk for visual feature and semantic spaces,
respectively. Once the transformations are learned, data from both domains can be projected
into a dk dimensional latent space for ZSL classification.

In particular, we perform concept matching between semantic and visual domains, in
which semantic vectors would be aligned with visual exemplars of each class with the pro-
posed semantics-preserving locality embedding. We note that such an embedding would
enforce within-class data locality to be preserved in the derived manifold. We now detail our
proposed formulations below.

To obtain AF and AS, we aim to solve the optimization problem below:

min
AS,AF

EC(AS,AF)+λ1ES(AF)+λ2Ω(AF ,AS)

s.t. ZHZ> = I.
(1)

where Z = [A>F X,A>S S] ∈ Rdk×(N+C) indicates the concentrated projected data matrix, S =
[s1,s2, . . . ,sC] ∈ Rds×C, and I is the identity matrix.

In the above formulation, EC measures the difference between visual and semantic con-
cepts, while ES performs semantics-preserving locality embedding across domains. The
regularization term Ω(AF ,AS) = ‖AF‖2

F + ‖AS‖2
F is penalized by λ2 to prevent overfit-

ting. As suggested in [18], we enforce the constraint of ZHZ> = I, where the center matrix
H = IN+C− 1

N+C 1N+C, and 1N+C is the matrix with all elements equal to one). This con-
straint is to prevent trivial solutions and to maximize the variance of the projected data.
Further details can be found in [18].

3.3 Bridging Image and Semantic Domains
As noted in [9, 27, 35], nearest-neighbor classification in the semantic space would pro-
duce satisfactory performance, if the projected visual data can be properly identified. In
other words, semantic vectors typically contain the concept of a particular class, and thus
exhibit discriminative abilities. Based on the above observation, we aim to match the con-
cepts between semantic and visual domains in the derived latent space. With the idea that
each semantic vector represents the concept of a particular class, we take the class means to
represent the concepts of each seen class in the visual domain. Thus, given data points x j

i in
class j, we have A>S s j ≈ 1

N j
∑

N j
i=1 A>F x j

i in the latent space. As a result, to match the concepts
between visual and semantic domains, the first term of (1) can be expressed as follows:

EC(AS,AF) =
C

∑
j=1
‖A>S s j−

1
N j

N j

∑
i=1

A>F x j
i ‖

2. (2)

3.4 Semantics-Preserving Locality Embedding
Locality-embedded projection has been utilized in computer vision tasks [19, 20, 26, 33].
From a geometric perspective, locality preserving projection aims to maintains the neighbor-
hoods of data samples across transformations, and thus the locality information can be trans-
ferred to the resulting subspace. Typically, locality-preserving projections can be learned via
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imposing a manifold regularizer [4]. To be more specific, one can introduce a regularizer
term 1

2 ∑i, j ‖A>xi−A>x j‖2Wi, j into the formulation of subspace learning, where W is the
affinity matrix that encodes the local structure of the data observed in the original space.
Based on such regularization, transformation A with locality guarantees can be obtained.

Different from existing locality-embedding techniques, we propose to enforce semantics-
preserving locality regularization and integrate the associated term into the framework of
subspace learning. This is to derive a ZSL subspace in which semantic and feature informa-
tion would be jointly embedded (instead of relying on information from either domain which
would limit the ZSL performances).

In our work, a semantics-preserving locality embedding term is proposed into our learn-
ing framework of (1). This is achieved by constructing a simple homogeneous graph which
only connects samples from the same class, i.e. Wi j = 1 if xi,x j are in the same class, and
Wi j = 0 otherwise. As the result, the second term of (1) is determined as follows:

ES(AF) =
1
2

C

∑
j=1
{ 1

N2
j

N j

∑
i=1

N j

∑
k=1
‖A>F x j

i −A>F x j
k‖

2}, (3)

where 1
N2

j
is for normalization.

We now explain why the introduction of semantics-preserving locality embedding is
preferable for relating data across visual and semantic domains, and thus improved ZSL
performance can be expected. It can be seen that, by minimizing (3), the constructed ho-
mogeneous affinity graph in the resulting subspace only enforces projected image data of
the same class to be close to each other. This implies that the local structure of this graph
which corresponds to a particular semantic label would be more compact after solving the
above optimization problem. As a result, improved separation between projected images of
different semantic labels can be expected. It is worth emphasizing that, the above idea is very
different from previous methods that relate cross-domain data by directly projecting visual
data to the semantic domain [9, 16, 35].

3.5 Zero-Shot Classification
Once the learning of (1) is complete, the above transformations can be obtained. In other
words, one can project test image data and semantic vectors of unseen classes onto the result-
ing subspace. Thus, prediction of unseen labels for test data can be performed accordingly.

To be more precise, with the learned transformations AS and AF for semantic and visual
feature spaces, XU and SU are projected onto the latent space accordingly. Then, for each
test image, it can be easily classified using the cosine similarity between all semantic vectors:

argmax
j

〈A>F xU ,A>S sU
j 〉

‖A>F xU‖‖A>S sU
j ‖

. (4)

The complete ZSL process of our proposed method is summarized in Algorithm 1. Please
see the Supplementary for detailed derivations.

4 From Inductive to Transductive ZSL
We now extend our ZSL formulation to a transductive version. In other words, we now
deal with the semi-supervised setting in which the semantic vectors sU

i and test instance xU
i
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Algorithm 1 Our ZSL with Semantics-Preserving Locality Embedding

Input: D = {xi,yi}N
i=1, {xU

i }NU

i=1, S, SU , and latent space dimension dk
1: Solve AS,AF in (1) using D and S
2: Project DU and SU on the latent space
3: Classify DU using the projected SU

Output: AS,AF , and {yU
i }NU

i=1

Algorithm 2 From Inductive to Transductive ZSL

Input: D = {xi,yi}N
i=1, {xU

i }NU

i=1, S, SU , latent space dimension dk
1: Initialize pseudo labels of DU using the inductive version
2: while not converge do
3: Solve (5) for updating AS,AF
4: Update the pseudo labels of DU

5: end while
Output: AS,AF , and {yU

i }NU

i=1

are both available and presented during the training stage. While recent works such as [10,
12, 14] particularly proposed transductive ZSL for achieving promising performances, our
formulation can be easily adapted from inductive to transductive settings as follows:

min
AS,AF

EC(AS,AF)+EU
C (AS,AF)+λ1[ES(AF)+EU

S (AF)]+λ2Ω(AF ,AS)

s.t. ẐĤẐ> = I,
(5)

where Ẑ= [A>F X,A>F XU,A>S S,A>S SU ]∈Rdk×(N+NU+CU+C) indicates the projected data ma-
trix for all visual instance and semantic vectors, and Ĥ = IN̂+Ĉ −

1
N̂+Ĉ

1N̂+Ĉ, where N̂ =

N +NU and Ĉ = C +CU denotes the total number of visual sample and semantic vector,
respectively.

Similar to the inductive version in (2), the term EU
C (AS,AF) is defined as follows:

EU
C (AS,AF) =

CU

∑
j=1
‖A>S sU

j −
1

NU
j

NU
j

∑
i=1

A>F xU, j
i ‖

2, (6)

where xU, j
i is the ith instance of the unseen class j, and NU

j is the total number of instances
of unseen class j. Note that, since no label information is available for test instances, the
labels of xU, j

i can only be estimated during the subspace learning process. Thus, we adopt
the self-taught strategy. That is, we view the predicted labels as pseudo labels of the visual
data of unseen classes. As for EU

S (AF), we simply apply (3) and replace x by xU .
To learn our transductive ZSL model, we start with learning the inductive version to

predict the pseudo labels for xU
i . Then, we update transformations AF and AS by (5), and

predict the pseudo labels yU
i in an iterative fashion until convergence (or the maximum iter-

ation number is reached). Algorithm 2 summarizes the learning of the transductive version
of our ZSL model.
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Table 1: Descriptions of the datasets.
CUB DOG AWA SUN

# of seen classes 150 85 40 645/646
# of unseen classes 50 28 10 72/71
# of images 11786 19499 30473 14340
Dim of Attribute 312 - 85 102
Dim of Word2Vec 400 400 400 -
Dim of Glove 400 200 400 -
Dim of Wordnet - 163 - -

Table 2: Performance comparisons of inductive ZSL. Ours* denotes our method without the
proposed embedding term, while Ours† (with embedding) directly applies si instead of g(si)
for representing semantic data. Note that, MTE [5] only considers 10 unseen classes in SUN
so its improved result is expected.

Methods CUB AWA DOG SUN
Attribute Word2Vec Glove Attribute Word2Vec Glove Word2Vec Glove Wordnet Attribute

SOC [28] 34.7 30.9 30.6 58.6 50.8 68.0 24.6 17.8 17.3 50.4
DeViSE [9] 42.3 28.5 24.2 77.0 48.6 45.7 22.2 18.9 27.8 61.1
ConSE [27] 33.6 28.8 30.8 59.0 53.2 49.8 18.1 17.0 19.6 49.6
SSE [41] 31.8 27.9 25.4 63.8 58.6 65.8 25.3 17.8 28.9 51.2
SJE [2] 50.1 28.4 24.2 66.7 52.1 58.8 19.6 17.8 24.3 63.3
ESZSL [32] 50.3 33.4 34.1 76.8 62.2 67.7 27.5 17.1 27.2 59.2
JLSE [42] 33.7 28.0 27.1 71.8 64.0 68.0 26.5 18.8 29.3 49.5
LatEm [38] 45.5 31.8 32.5 71.9 61.1 62.9 22.6 20.9 25.2 63.7
Sync [6] 48.7 31.2 32.8 72.9 62.0 67.0 28.0 20.4 30.7 62.8
MTE [5] 43.3 - - 77.3 - - - - - 84.1
Ours* 52.3 29.0 31.9 71.9 62.9 70.5 26.7 18.3 22.6 64.0
Ours† 54.9 32.7 33.2 70.9 61.3 68.8 29.7 25.3 27.1 69.3
Ours 56.7 35.2 36.9 78.4 66.5 68.6 29.9 26.1 27.2 66.2

5 Experiments

5.1 Datasets and Settings

We consider four benchmark datasets for evaluation: CUB-200-2011 Birds (CUB) [36],
Stanford Dogs (DOG) [13], Animal with Attributes (AWA) [16], and SUN Attribute (SUN) [29].
We followed the seen/unseen class data split of [38] for AWA, CUB, and DOG. As for SUN,
we use the 10 pre-specified data splits as suggested in [6]. All the visual features are extracted
by CNN via GoogLeNet (i.e., the top-layer pooling units). For the semantic domain, we con-
sider four different types of semantic features: Attribute [16], Word2Vec [24], Glove [30]
and Wordnet Vector [25]. The first is annotated manually for each class, while Word2Vec
and Glove are viewed as unsupervised ones extracted from Wikipedia corpus using deep
neural networks. Finally, WordNet is a hierarchy-based word representation (see [6, 38] for
detailed information). Table 1 summarizes the datasets considered in our experiments.

To process the data, we normalize each visual feature vector by z-score normalization.
Each semantic vector si is normalized to unit `2 norm, and is transformed to a kernel repre-
sentation g(si) = [d(si,s1),d(si,s2), . . . ,d(si,sĈ)] where d(si,s j) = exp(−γ‖si− s j‖2) with
γ = 1. Later we will verify our use of kernelized semantic features g(si). Ĉ denotes the
number of classes available during training. For all experiments, we select the parameters λ1
and λ2 from {10−3,10−2,10−1,1} via cross-validation. For simplicity, we fix the dimension
dk of the derived latent space as the number of classes available during training.
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Table 3: Performance comparisons of transductive ZSL.
Methods CUB AWA DOG SUN

Attribute Word2Vec Glove Attribute Word2Vec Glove Word2Vec Glove Wordnet Attribute
UDA [14] 39.5 - - 73.2 - - - - - -
TMV [10] 51.2 32.5 38.9 89.0 69.0 88.7 24.4 15.2 25.6 61.4
SMSESZSL [32] 52.3 34.7 32.3 89.6 78.0 82.9 29.7 17.9 29.8 60.5
SMSOurs [32] 59.2 36.0 36.1 91.1 88.2 81.3 37.2 27.3 31.3 60.5
Ours 67.3 41.5 39.5 90.4 94.5 95.6 33.5 30.4 39.7 70.1

(a) (b) (c) (d)

Figure 2: t-SNE visualization on AWA with Attribute semantic on (a) SOC [28], (b)
SSE [41], (c) JLSE [42], and (d) ours. Comparing (c) and (d), although both JLSE and our
method result in well-separated clusters for each class, each cluster in (d) is more compact
and thus improved performance can be expected (see Table 2).
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Figure 3: Convergence analyses on (a) CUB, (b) AWA, (c) DOG, and (d) SUN.

5.2 Inductive ZSL

To compare our approach with baseline and recent ZSL methods, we consider SOC [28],
DeViSE [9], ConSE [27], SJE [2], ESZSL [32], LatEm [38], SSE [41], JLSE [42], Sync [6]
and MTE [5]. We note that, VGG features are applied in [5] for describing the images. We
do not take DAP and IAP [15] as the baselines, since they can only be applied to handle
binary attributes (recent ZSL methods generally perform in continuous semantic spaces).

Table 2 now lists and compares the performances of different methods. In addition to
the comparisons with recent ZSL methods, we further conduct controlled experiments for
our approach. That is, we have Ours* in Table 2 denote our method without the proposed
semantics-preserving locality embedding term, while Ours† only applies si instead of g(si)
for representing semantic data (as noted in Section 5.1). In addition, we apply t-SNE to
produce embedding visualization in Figure 2. Comparing to the visualization outputs of [28,
41, 42], it can be seen that our method not only resulted in improved separation between
different classes, the local structure of the projected data for each class is also more compact
compared to others.

From the above quantitative and qualitative results, we see that our method performed
favorably against state-of-the-art ZSL approaches, while the use of the proposed embedding
term with kernelized semantic representation can be successfully verified.
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Figure 4: Performance sensitivity w.r.t. the subspace dimension dk on (a)CUB, (b)AWA,
(c)DOG, and (d)SUN.

5.3 Transductive ZSL

To compare with recent transductive ZSL methods, we have: UDA [14], TMV [10] and
approach of SMS [12]. Note that UDA utilizes CNN OverFeat features [34] as image repre-
sentations, and SOC is applied to initialize the transformation for TMV. As for the initializa-
tion for SMS, we apply two different strategies for comparisons: ESZSL and the inductive
version of our ZSL model (denoted as SMSESZSL and SMSOurs, respectively).

The results of different transductive ZSL methods are listed in Table 3. Compared to Ta-
ble 2, it is clear that transductive ZSL generally achieved improved accuracy. This suggests
that the exploration of information extracted from data of unseen class wound be prefer-
able for ZSL problems. Nevertheless, from the results shown in this table, our method still
achieved comparable or improved performances when comparing to state-of-the-art trans-
ductive ZSL methods. It is worth repeating that, these recent ZSL approaches are particu-
larly designed for solving transductive learning problems, while ours can be generalized to
both inductive and transductive modes.

5.4 Convergence and Parameter Sensitivity

While our inductive ZSL produces closed-form solutions for transformations A, the trans-
ductive version of our method applies an iterative scheme for deriving the solutions. To
verify the convergence during the learning of our ZSL model, we show the results on differ-
ent datasets using semantic vectors in Figure 3. From this figure, it is clear that our method
generally converged within 10 iterations and achieved satisfactory performance.

For the parameter sensitivity analysis, we first discuss the dimension dk of the derived
subspace. In Figure 4, we show the results with varying dk. Based on the results shown in
this figure, we can confirm that our choice of dk = C would be reasonable (i.e., the results
were generally not sensitive to this choice except for DOG).

Finally, as noted in Section 5.1, we now assess the role of γ for the Gaussian kernelized
semantic vectors g(si). In our experiments, we fix γ = 1 which results in satisfactory perfor-
mance across all datasets. We show an example in Figure 5. In this figure, we compare the
performance of varying γ on CUB, and we successfully verify that our choice of γ = 1 for
representing Gaussian kernelized semantic vectors would be preferable.

6 Conclusion
We proposed a zero-shot learning approach via semantics-preserving locality embedding,
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Figure 5: Performance on CUB with varying γ .

which aims at deriving a subspace for relating visual and semantic space via concept match-
ing. We show that, by preserving the locality of within-class data in the derived subspace,
improved separation between semantic data can also be achieved. In our experiments, we
showed that our model can be applied to both inductive and transductive settings, and per-
formed favorably against state-of-the-art approaches.
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